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Electric and Magnetic Monopoles from a Lorentz-
Covariant Hamiltonian
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In previous work we generalized the relation between the usual noncovariant
Hamiltonian and the Poisson brackets to a covariant Hamiltonian and new brackets
in the frame of Minkowski space. In the present paper we study the consequences
of this new algebraic structure on the Lorentz Lie algebra defined in terms of
these brackets. We show how a monopole with a dual electric–magnetic charge
appears as a consequence of the conservation of the form of the standard Lorentz
algebra symmetry. The breakdown of this symmetry is also envisaged.

1. INTRODUCTION

The derivation of the Maxwell equations from a Hamiltonian formalism
is a well-known subject. One of the best ways to realize this goal is given,
for example, in the book of Yourgrau and Mandelstam [1]. The Hamiltonian
approach is very important because it opens the door to the generalization
of other gauge theories like gravitation [2,3].

In a previous paper [4] we introduced, in a four-dimensional Minkowski
space, a new kind of symplectic structure by means of brackets for studying
the dynamics associated to a covariant Hamiltonian. These brackets define
an algebraic structure between position- and velocity-dependent functions
without an explicit formulation. We pointed out the link between these brack-
ets and those used by Feynman in his derivation of the Maxwell equations
[5–8]. The case of a curved space was also considered and the Christoffel
symbols, covariant derivatives, and curvature tensors were expressed in terms
of these brackets.

In the present paper we study the consequences of this new algebraic
structure on the Lorentz Lie algebra defined in terms of these brackets. In
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ref. 8 considered the sO(3) Lie algebraic structure in the context of the
brackets used by Feynman, where the Dirac monopole appeared naturally as
a consequence of the conservation of this Lie algebra. Here it will be shown
that the Lorentz Lie algebra has a much richer structure. Actually the Lorentz
symmetry induces a dual symmetry between a magnetic angular momentum
and a new electric angular momentum leading to a general angular momentum
equal to zero. We show how this duality can be broken.

2. COVARIANT HAMILTONIAN AND BRACKETS
FORMALISM

In ref. 4 a generalization of the usual relation between noncovariant
relativistic Hamiltonians and Poisson brackets to a Lorentz-covariant Hamil-
tonian H and new formal brackets in the frame of the Minkowski space was
studied. Note that, in a different manner, Bracken also studied the relation
between Feynman’s problem and the Poisson brackets [9]. In this section we
recall the fundamental relations of our algebraic structure.

The dynamic evolution law is given by means of a one real-parameter
group of diffeomorphic transformations:

g(IR 3 M4) → M4: g(t, x) 5 gtx 5 x(t)

and the “velocity vector” associated to the particle is naturally introduced by

ẋm 5
d
dt

gtxm (1)

The derivative with respect to t of an arbitrary function is defined on the
tangent bundle space by the usual relation:

df (x, ẋ, t)
dt

5 [H, f (x, ẋ, t)] 1
­f (x, ẋ, t)

­t
(2)

where the Lorentz-covariant Hamiltonian H is defined as [4]

H 5
1
2

m
dxm

dt

dxm

dt
5

1
2

mẋ mẋm (3)

Equation (2) giving the dynamics of the system is the definition of our new
brackets structure, and is the fundamental equation of this paper.

We require for these new brackets the usual first Leibniz law:

[A, BC ] 5 [A, B]C 1 [A, C ]B (4)

and the skew symmetry
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[A, B] 5 2[B, A] (5)

where the quantities A, B, and C depend on xm and ẋm.
In the case of the vector position xm(t) we have from (2)

ẋm 5 [H, xm] 5 m[ẋn, xm]ẋn (6)

and we easily deduce that

m[ẋn, xm] 5 gmn (7)

where gmn is the metric tensor of the Minkowski space. Note that contrary
to Feynman’s work, the metric tensor is a consequence of our construction
and is not imposed by hand, and is much more natural. In addition, the
dynamics is given by the usual definition (2), whereas Feynman needed to
add a supplementary Leibnitz law for the derivative with respect to time [4].

We impose the natural locality property

[xm, xn] 5 0 (8)

which directly gives for an expandable function of the position or the velocity
the following useful relations:

[xm, f (ẋ)] 5 2
1
m

­f (ẋ)
­ẋm

(9)

[ẋm, f (x)] 5
1
m

­f (x)
­xm

To compute the bracket between two components of the velocity we require
the Jacobi identity:

[[ẋm, ẋn], xr] 1 [[xr, ẋm], ẋn] 1 [[ẋn, xr] ẋm] 5 0 (10)

which leads by using (7) to the definition of the skew-symmetric “electromag-
netic” tensor:

[ẋm, ẋn] 5 2
qFmn(x)

m2 (11)

and the equation of motion is recovered as

ẍm 5
dẋm

dt
5 [H, ẋm] 5

q
m

Fmn(x)ẋn (12)

3. LORENTZ SYMMETRY

As an application of the formalism introduced in ref. 4 and recalled in
the preceding section we study the consequence of this algebraic structure
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on the Lorentz symmetry. In ref. 8 we considered the sO(3) Lie algebraic
structure in the context of the brackets used by Feynman. Here it will be
shown that the Lorentz Lie algebra has a richer structure. Actually the Lorentz
symmetry induces a dual symmetry between a magnetic angular momentum
and a new electric angular momentum leading to a general angular momentum
equal to zero. We show how this duality can be broken.

Defining the four-angular momentum as

Lmn 5 m(xmẋn 2 xnẋm) (13)

we find, by using the prior defined laws of the brackets, the standard Lorentz
Lie algebra without electromagnetic field (Fmn 5 0) and the transformation
laws of the position and velocity by this symmetry:

[xm, Lrs] 5 gmsxr 2 gmrxs

[ẋm, Lrs] 5 gmsẋr 2 gmrẋs (14)

[Lmn, Lrs] 5 gmrLns 2 gnrLms 1 gmsLrn 2 gnsLrm

These relations are the same as those obtained for the Poincaré Lie algebra
with the four-momentum Pm; the algebra in the tangent bundle space context
is similar to this one built in the cotangent bundle space.

3.1. Case with a Gauge Curvature

We have seen that in a presence of a gauge curvature we have

[ẋm, ẋn] 5 2
q

m2 Fmn (15)

which leads to new algebraic relations:

[xm, Lrs] 5 gmsxr 2 gmrxs

[ẋm, Lrs] 5 gmsẋr 2 gmrẋs 1
g
m

(Fmsẋr 2 Fmrẋs) (16)

[Lmn, Lrs] 5 gmrLns 2 gnrLms 1 gmsLrn 2 gnsLrm

1 q(xmxrF ns 2 xnxrFms 1 xmxsF rn 2 xnxsF rm)

Now we introduce a new generalized angular momentum:

+mn 5 Lmn 1 Mmn (17)

where Mmn are the components of a new electromagnetic angular momentum
in order to keep the standard Lorentz Lie algebraic structure (14), that is,
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[xm, £rs] 5 gmsxr 2 gmrxs

[ẋm, £rs] 5 gmsẋr 2 gmrẋs (18)

[£mn, £rs] 5 gmr£ns 2 gns£ms 1 gms£rn 2 gnd£rm

leading to some conditions on Mmn: from the first relation we deduce that
Mmn is only position dependent and from the second one we have

[ẋm, M rs] 5
q
m

(Fmsxr 2 Fmrxs) (19)

Putting this result in the third equation, we get

gmrM ns 2 gnrMms 1 gmsM rn 2 gnsM rm

5 q(F nsxmxr 2 Fmsxyxr 1 F rmxmxs 2 F rmxnxs) (20)

Remark. The conservation of the four-angular momentum tensor is real-
ized; indeed, the condition [H, £mn] 5 0 is directly deduced from Eq. (18):

m[ẋm, £rs]ẋm 5 m(gmsẋr 2 gmrẋs)ẋm 5 0

Let us consider the only interesting case, the projection of this relation
on the three-dimensional Euclidean space, where m 5 r 5 k, n 5 i, and
s 5 j. Equation (20) becomes

M ij 5 q(F ijxkxk 2 F j
kxkxi 2 Fk

ixkxj) (21)

From

M i 5 «i
jkM jk (22)

the same magnetic angular momentum as for the sO(3) case is deduced, as
expected [8]:

›
M 5 2q(

›
r

›
B )

›
r (23)

where we have naturally defined the magnetic field by

Bi 5 «ijkF jk (24)

Putting down (23) into (21), we find

xiB j 1 x jBi 5 2x jxk ­Bk

­xi
(25)

which has a radial vector field centered at the origin solution:

›
B 5

›
r

4pr 3 (26)

For this field we obtain the Poincaré magnetic angular momentum [11]
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›
M 5 2

qg
4p

›
r
r

(27)

The other cases are related to Lorentz boosts and have no simple interesting
results. Projecting the Lorentz Lie algebra structure on the three-dimensional
space, we recover the same angular momentum as for the sO(3) symmetry
defined by the brackets used by Feynman. To obtain new results, we consider
now in addition the dual of the gauge field.

3.2. Case with Hodge Duality

We choose the following definition for the gauge curvature:

[xm, ẍn] 5 2[ẋm, ẋn] 5
1

m2 (qFmn 1 g *Fmn) (28)

where g is the magnetic charge of the magnetic monopole [12] and the *-
operation is the Hodge duality. From this we deduce a generalization of the
equation of motion [7]:

mẍ 5 qFmn(x)ẋy 1 g *Fmn(x)ẋy (29)

and in this situation the Lorentz Lie algebra structure becomes

[xm, Lrs] 5 gmsxr 2 gmrxs

[ẋm, Lrs] 5 gmsẋr 2 gmrẋs 1
g
m

(Fmsẋr 2 Fmrẋs)

1
g
m

(*Fmsẋr 2 *Fmrẋs) (30)

[Lmn, Lrs] 5 gmrLns 2 gnrLms 1 gmsLrn 2 gnsLrm

1 q(xmxrF ns 2 xnxrFms 1 xmxsF rn 2 xnxsF rm)

1 g(*F nsxmxr 2 *Fmsxnxr 1 *F rnxmxs 2 *F rmxnxs)

We introduce a new generalized electromagnetic angular momentum:

£mn 5 Lmn 1 Mmn (31)

where the constraint imposed on the tensor M by the Lie algebra structure
(14) shows that it must be only position dependent and satisfies

[ẋm, M rs] 5
q
m

(Fmsxr 2 Fmrxs) 1
g
m

(*Fmsxr 2 *Fmrxs) (32)

Then Eq. (20) becomes
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gmrM ns 2 gnrMms 1 gmsM rm 2 gnsM rm

5 q(F nsxmxr 2 Fmsxnxr 1 F rnxmxs 2 F rmxnxs) (33)

1 g(*F nsxmxr 2 *Fmsxnxr 1 *F rmxmxs 2 *F rmxnxs)

and the result of the projection of this equation on the three-dimensional
space is

Mij 5 q(F ijxkxk 2 F j
kxkxi 2 Fk,xkxj) 1 g(*F ijxkxk 2 *F j

kxkxi (34)

2 *Fk
ixkxj)

The new angular momentum is the sum of two contributions, a magnetic one
(the same as before) and an electric one:

›
M 5 2q(

›
r

›
B )

›
r 1 g(

›
r

›
E )

›
r 5

›
Mm 1

›
Me 5 2(

›
r

›
P )

›
r (35)

where
›

Mm 5 2q(
›
r

›
B )

›
r (36)

›
Me 5 g(

›
r

›
E )

›
r

are the magnetic and electric angular momenta, and
›

P 5 q
›

B 2 g
›

E (37)

Here the vector
›

P plays the role of
›

B in Eq. (23).

3.2.1 Solution with a Generalized Angular Momentum Equal to Zero

Reguiring now the Jacobi identity between the velocities

[ẋm, [ẋn, ẋr]] 1 [ẋn, [ẋr, ẋm]] 1 [ẋr, [ẋm, ẋn]] 5 0 (38)

we obtain the generalized Maxwell equations

q(­mF nr 1 ­nF rm 1 ­rFmn) 1 g(­m*F nr 1 ­n*F rm 1 ­r*Fmn) 5 0 (39)

The projection of (39) on the three-dimensional space gives

q div
›

B 2 g div
›

E 5 div(
›

P ) 5 0 (40)

where
›

P can be taken either perpendicular to the vector
›
r or null. We then have

›
M 5 0 (41)

The preceding Jacobi identity imposes either that there are no electric and
magnetic monopoles or that the two monopoles exactly compensate each
other. In the case without the dual field we did not impose this Jacobi identity
in such a manner as to get a magnetic monopole and as a consequence the
Poincaré angular momentum. By adding the dual field, the Jacobi identity
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does not forbid monopoles, but the the electric and magnetic contributions
cancel the electromagnetic angular momentum. In the next section we relax
this Jacobi identity and break the duality symmetry between the two
monopoles.

3.2.2. Solution with a Generalized Angular Momentum Different from
Zero

To break this duality symmetry, we introduce the tensor Nmnr as

q(­mF nr 1 ­nF rm 1 ­rFmn) 1 g(­m*F nr 1 ­n*F rm 1 ­r*Fmn) (42)

5 qgNmnr

If we still project on the three-dimensional space, we arrive at the result
div

›
P Þ 0. Following the same reasoning as in the preceding section, we

find the following equation for the field
›

P [cf. (25)]:

xiPj 1 x jPi 5 2x jxk ­Pk

­xi
(43)

which has a radial vector field centered at the origin solution:

›
P 5

›
r

4pr 3 (44)

We get then a nonvanishing electromagnetic angular momentum:

›
M 5

›
Mm 1

›
Me 5 2

qg
4p

›
r
r

(45)

and as the modulus of this momentum is constant along the r axis, the
magnetic and electric charges are not independent; this is the famous Dirac
quantization condition connecting these two charges. It appears clearly that
the vector

›
P 5 q

›
B 2 g

›
E plays the same role as the magnetic field in the

case without dual field, and due to the fact that for these monopoles the
source of the fields is localized at the origin,

div
›

P 5 [ẋ i, [ẋ j, ẋ k]] 1 [ẋ j, [ẋ k, ẋ i]] 1 [ẋ k, [ẋ i, ẋ j]]

5 q div
›

B 2 g div
›

E 5
qg
4p Fr l,

rl

r 3G 5 qg d3(
›
r ) (46)

for example, we can choose

›
B 5

g
8p

›
r
r 3

(47)
›

E 5 2
g

8p

›
r
r 3



Monopoles from a Lorentz-Covariant Hamiltonian 2631

We have found that
›

M is a new angular momentum which is the sum of the
Poincaré magnetic angular momentum plus an electric angular momentum;

›
B is the field of a Dirac magnetic monopole and

›
E is the electric field of

an electric “Coulomb” monopole.
In addition, we remark that the generalized angular momentum

›
£ 5 m(

›
r ∧

›
ṙ ) 2 (

›
r ?

›
P )

›
r (48)

is conserved:

d
›

£
dt

5 m(
›
r ∧

›
r̈ ) 2 {

›
r ∧ (

›
ṙ ∧

›
P )} 5 0 (49)

because the particle satisfies the usual equation of motion.

4. CONCLUSION

In this paper we studied the consequences of a new algebraic structure
defined in the context of a Lorentz-covariant Hamiltonian introduced in ref.
4 on the Lorentz symmetry. A dual magnetic–electric monopole appears as
a direct consequence of the conservation of the standard form of the Lorentz
Lie algebra and could be connected to Schwinger’s dyons [13]. The break-
down of one of the Jacobi identities plays a key role in this framework
because it breaks the magnetic–electric duality and is responsible for the
presence of a new generalized angular momentum.

This formalism can be a new approach for studying gauge theories. Two
directions at least could be studied: a true application to the quantification
problem, and the generalization to Dirac brackets. The significance of the t
parameter is still open; the connection with the canonical proper time intro-
duced by Gill et al. [15, 16] is perhaps a good approach to examine this.
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